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Abstract 

This paper precisely classifies all simple groups with subgroups of index n and all primitive 

permutation groups of degree n, where n = 2.3’, 5.3’ or 10.3’ for Y 2 1. As an application, 

it proves positively Gardiner and Praeger’s conjecture in [6] regarding transitive groups with 
bounded movement. 

1991 Math. Subj. Class.: 20B15, 20B30, 20B35 

1. Introduction 

Let Sz be a finite set of n elements and G a transitive permutation group on 52. Let 

H = G, for some CI E 0. Then 1511 = IG : HI = n. Determining primitive permutation 

groups with given degrees n is a long-standing problem in permutation group theory. 

For certain values of n, the primitive permutation groups G of degrees n have been 

classified; for example, Sims [26] for n 5 20, Tan and Wang [28] for 21 i n I 30, 

Dixon and Mortimer [5] for n 2 1000; Guralnick [8] for G simple and n a power of 

a prime, and Liebeck and Sax1 [20] for n odd and [21] for n = mp with m < p and 

p prime. In this paper, using the classification of finite simple groups, we precisely 

classify all simple groups with subgroups of index n and all primitive permutation 

groups of degree n where n = 2.3’, 5.3’ and 10.3’ for r 2 1. 

However, the main motivation of this work came from a conjecture of Gardiner 

and Praeger regarding transitive groups with bounded movement defined as follows. A 

’ The author is grateful to Professor Cheryl E. Praeger for her helpful suggestions in writing this paper. 
and to Greg Gamble and Jie Wang for helpfid discussions in the preparation of this paper. The author 
acknowledges support of his research scholarship from Australia. 
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transitive G is said to have “bounded movement” condition: 

BM(m): if g E G and A z 52 satisfy A n A4 = 0, then [Al 5 m. 

Every permutation group G satisfies BM(m) for some smallest m < 152)/2. On the 

other hand, if G satisfies BM(m) for some m, then Praeger [24] proved 1521 < 3m. This 

simple bound is sharp and Gardiner and Praeger [6] posed 

Conjecture. Let G be a transitive permutation group of degree 3m satisfying BM(m). 

Then either G = SJ and m = 1, or G = A4 or A5 and m = 2, or G is a 3-group. 

About this conjecture, Praeger [24] proved 3m = 3’, 2.3’, 5.3 or 10.3’, and Gardiner 

and Praeger [6] proved that the minimal counterexample to this conjecture is a simple 

group acting primitively on Q, where 1511 = 3m. We shall show that this conjecture 

is true by checking our list of the simple groups with subgroups of the corresponding 

indexes. 

Table 1 

G H IG : HI H is maximal? 

A5 00 

z2’ 
z2 

‘46 s4 

A4 

03 

z: 

A7 L2U) 

A8 23.L3(2) 

AIO S3 

A8 

“L AC-I 

6 Yes 

15 No 
30 No 
15 Yes 
30 No 
45 No 
90 No 
15 YCS 

I5 Yes 
45 Yes 
90 No 
3r.1 Yes 

L2@) 23 .z, 9 Yes 

u4(2) 24.A5 21 Yes 

24 .A4 33.5 No 

24.D,o 34.2 No 

24.22 34.5 No 

24 .D6 33.10 No 

24.22 34.10 No 

2.(A4 x A4).2 45 Yes 

2$A4 X A4) 90 No 

2(22 x A4) 33.10 No 

U4(3) L3(4) 34.2 Yes 

sP6(2) 26.L3(2) 33.5 Yes 

fq(2) 26.As 33.5 Yes 

LZ(P) z,.-+l);z 3’.2 or 3’.10 Yes 

z,~q,-I,/lo 3r.10 No 

L2(P2) ‘i.‘(p2 - I)j2 3r.10 Yes 
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Table 2 

T HnT n 

‘45 DIO 6 

‘46 s4 15 

Al L2(7) 15 

‘48 Z3.L3(2) 15 

,410 s8 45 

AC &I 3r.1 

L2(8) 

u4(2) 

U4(3) 

@6(2) 

Pfq(2) 

L2(P) 

L2(P2) 

23 .ZT 9 
24 .A5 27 
2,(A4 x A4).2 45 

L3(4) 34.2 

26.L3(2) 33.5 

26.A8 33.5 

ZP%-l,/2 3’.2 or 3’.10 

z;q7-l),2 3’.10 

The main results of this paper are the following theorems: 

Theorem 1.1. Let G be a nonabelian simple group and H a subgroup of G such 

that \G : HI = 3’1, where Y > 1 and 1 10. Then G, H and IG : HI are listed in 

Table 1. 

Theorem 1.2. Let G be a primitive permutation group of degree n = 3’1 where r 2 1 

and I 10 on a set Q and let H = G,, CI E s2. Then one of the following is true: 

(i) 2: 4 G I AGL(d,3) for some integer d 2 1; 

(ii) G, H and n are listed as follows: 

G H n Remark 

L2(8)?P (23.Z7)lP 32” 

u,(2)lP (24.A5)lP 33m 

A,lP AC-1 ? P 3 fin c = 3” and t > 2 

where m > 2 and P is a transitive group of degree m; 
(iii) sot(G) = T is simple and one of the items in Table 2 holds: 

Remark. By Theorem 1.2, we know that if G is a primitive permutation group of 

degree 3’2, 3’5 or 3’10 for r 2 1 then either G is 2-transitive or (G,G,) = (Ah,&), 

(Alo,&), (&(2),24.A5), (U4(2),2*(A 4 X &>*2>, (u4(3),L3(4>)> (~P&)92%2)> Or 

(Ps2;(2), 2’j.As). 
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The third theorem shows that Gardiner and Praeger’s conjecture is true: 

Theorem 1.3. Let G be a transitive permutation group of degree 3m satisfying 

BM(m). Then one of the following holds: 

(a) G = $3, m = 1; 
(b) G = Ad,As, m = 2; 

(c) G is a 3-group. 

The notation and terminology used in this paper are standed (see [3, 14, 271). In 

particular, for an integer n, nlr and nip/ denote the p-part and the p/-part of n, 
respectively. 

2. Preliminaries 

This section quotes some preliminary results used in the following sections, 

Lemma 2.1. Suppose that p is a prime and n _> 3. Then 

( 1) ([9, IX 8.3 and 8.41) there exists a prime k > n such that k p” - 1 and k p’ - 1 

for all 0 < i < n, except in the case p = 2 and n = 6; 

(2) tf n = 2m is even, then there is prime k > n such that k pm + 1 but k p’ - 1 

for all i < n, except in the case p = 2 and m = 3. 

Proof. Clearly part (2) is an immediate consequence of part (1). 0 

Lemma 2.2 ([S, 2.11). Let C(n, k) denote the binomial coeficient n!/k!(n - k)!. If 
C(n, k) = Pam, where (p,m) = 1, then pa 5 n. For a natural number, there is a 
prime k such that n <k < 2n. 

Lemma 2.3. Let G be a finite simple group and z(IGl) the set of all prime divisors 
of IGI. Then (where the number after G is the order of G) 

(1) ([7, Pp. 12-141) if I4Gl>l = 3 then G = A5 (223.5)r & (23325), L2(7) (2j3.7)~ 

L2(8) (23327)? L2(17) (243'17), L3(3) (243313), u3(3> (25337) or u4(2) (26345)i 

(2) ([251) if n(lGI) = {2,3,7, P} and 72 IGI, then G = A7 (2-'325.7), ~48 (20325.7)~ 
4 

A9 (26345.7),A10 (2734527),L2(13) (223.7.13$2(27) (2’3+13),L2(127) (27327*127), L3(4)(26325.7)~ 

e6(2) (293J5.7)~ o:(2> (2'2355L7)T G2(3> (26367d3)y u3(5) (2432537) Or u4c3) (273b5.7). 

3. The simple groups with a subgroup of index 3’1 

In this section, we prove Theorem 1.1. Let G be a simple group and H < G. If 

\G : H( = 3’1 for some 1 10, then there is a maximal subgroup A4 of G such that 
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(G : M][3’1. Th us we suppose that G has a maximal subgroup of index 3’1. We shall 

check the four types of simple groups separately as follows. 

3.1. The alternating groups and the sporadic simple groups 

Lemma 3.1. If G is an alternating simple group and H is a subgroup of G of index 

3’1 where r 2 1 and I 10, then Theorem 1 .l holds. 

Proof. Let G = A,, the alternating group of degree n, and H a maximal subgroup of 

G of index 3’1. Let Q be a set of n-elements and let G act naturally on 0. 

First assume that H is not transitive on 0. Then it is easy to see H = (S, x S,_,)n 
G = (A, x A,_,).2 with m < n/2. Thus IG : HI = n!/m!(n - m)!. By Lemma 2.2, 

3’ I n. Thus 

(n - l)! IG:HI IG:Hl 1<1o Z---<<Z 
m!(n - m)! n - 3’ - . 

Sincem~n/2,n>2m+land(n-i)/(m-i+l)~(n-l)/m>2fori=2,...,m-l. 
Thus 

1o > (n - l>! 
- m!(n - m)! 

=(n-l)(n-2)...(n-m+1), n-l m-l 
m(m- 1)...2 (-> 

2 2+‘. 
m 

So m 5 4. It is straightforward to check that all possibilities for (G, H) are listed in 

Theorem 1.1. 

Next assume that H is transitive on 0. We use induction on n = 10. Clearly if 

n = 5, then the lemma is true. Suppose that the lemma is true for all alternating groups 

of degrees less than n. For any o! E Q, G, = A,,_, . Since H is transitive on 0, we 

have IA,,_, : H,I = (G, : H,I = \G : HI. Thus H, is a subgroup of A,_.1 of index 3’1. 

By the induction assumption, (A,_, , H3() is in the list of Theorem 1 .l. If H, = An_2 
then n 5 (G : HI = (A,_1 : An-21 = n - 1, which is not possible. Thus H, # A,,-2 and 

so n - 1 < 10. A straightforward check by the information in the Atlas [3] shows the 

list of the lemma is complete. q 

Lemma 3.2. If G is a sporadic simple group, then G has no subgroup H of index 

3’1, where r > 1 and 1 10. 

Proof. If G = Z’h,J4,Fii,, BM or M, then there is a prime p > 5 such that p2 ( ]G\. 

Since p 
ii 

1G : HI, H contains a Sylow p-subgroup of G. All such subgroups H have 

been listed in [2]. Using this list, together with the Atlas [3] and [16], it is easy to 

check IG : H( @‘lo. 

For the other sporadic groups G, if G = Fi 23 then all maximal subgroups of G are 

listed in [ 151; if G # Fi23 then all maximal subgroups H of G are listed in the Atlas 

[3]. It is easy to check that IG : HI,/‘3’.10. 0 
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3.2. The exceptional simple groups of Lie type 

Let G be an exceptional simple group of Lie type over GF(q) where q = pe. 

Suppose that H is a maximal subgroup of G. Then by [22], either IHI < qk(@ where 

k(G) are listed in [22, Table 11, or H is a parabolic subgroup of G, or H is explicitly 

listed in [22, Table 11. We shall treat these cases separately. Note that since 3 JSz(q)(, 

we assume G#Sz(q). 

Lemma 3.3. If H is a maximal subgroup of G with jH( -K q ‘cG), then (G : HI @JO. 

Proof. Let no = (G(/qk(G). Since lH(-~q~(~), we have (G : HI > no. By [22, Table 11, it 

is easy to obtain G, qk(‘) and no. A straightforward checking shows that all possibilities 

are G = G*(2) and Gz(3). By the Atlas [3], G has no maximal subgroup of index 3’1. 

0 

Lemma 3.4. If H is a parabolic subgroup then (G : HI &Yl where r 1 1 and I/ 10. 

Proof. Assume that H is a parabolic subgroup of G with index 3’1. If G = 2G2(q), 
3D J(q) or 2F4(q), then by [4, 12, 13, 231, all such H have been known. It is easy 

to check that ]G : HI ,/3’1. Suppose now G # 2G2(q),2F4(q) or 3D4(q). Since N 

is a parabolic subgroup, H is an extension of a p-group by the Chevalley group C 

determined by a maximal subdiagram of the Dynkin diagram of G. It is easy to show 

that there is a positive integer m such that any prime divisor of JHI divides q or q’ - 1 

for i 5 m and that there is an n > m such that n 2 6 and q” - 1 IGI with q” # 26. By 

Lemma 2.1, there is a prime k q” - 1 such that k > n and k q’ - 1 for all i < n. Thus 

k IHI and so k IG : HI, a contradiction. tl 

Lemma 3.5. Suppose that H is a group listed in [22, Table 11. Then IG : H( ,/3’*10. 

Proof. By [22, Table 11, all H have been explicitly listed. Straightforward calculations 

show that ]G : HI&lo. 0 

3.3. The classical simple groups of Lie type 

Let G be a classical simple group of Lie type on V(n,q), where q = pe. Aschbacher 

[l] divided the maximal subgroups of G into nine collections: %‘-%!s and 9? We shall 

treat these collections separately. First recall a result of Liebeck [17]. 

Theorem 3.6 ([17]). Let G be a classical simple group and H a maximal subgroup 
of G in collection 9 Then one of the following holds: 
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(ii) 

(iii) 
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sot(H) G 

M24 

cm 

pnT6(q), q euen 

LIIG) 

a,+,(2) 

We shall analyze the three cases in inverse order separately. 

Lemma 3.7. If H is a group in Theorem 3.6(iii), then IG : HI //3’.10. 

Proof. It is easy to know that 4 IL11(2) : AI241 and 4 IQ,‘, : Co, 1, so the lemma is true 

for these cases. For the other cases, it is easy to show that q2 IG : HI, so p = 3, and 

it is equally easy to show that IG : HI,! > 10, so IG : H1,/3’10. 0 

Lemma 3.8. ZfH is a group in Theorem 3.6(ii), then IG : HI ,/3’.10. 

Proof. Note that now IHI l(n + 2)! and n 2 3. Assume that G = L,(q). If it > 9, then 

(q”-l)(q”~‘-l)(q”2-1)~]G]. By Lemma 2.1, there are primes ki such that kj > n-j, 

kj q”-j - 1 and kj 
t 

qi - 1 for all i < n - j, where j = 0, 1,2. Clearly, kj > n - 2 > 7. If 

IG : Hl(3’10, then kjllHI, so there are three different primes among n + 2, n + I, n 

and n - 1, which is not possible. Thus n I 8,7c(]HI)C{2,3,5,7} and 72 IH(. If 

JG : Hli3’10 then n(lG])C{2,3,5,7} and 72i 

i 

IGI. By Lemma 2.3 and the Atlas [3], 

this is not possible. For the other classical simple groups, similar arguments deduce 

IG : HIJi3’10. 0 

Lemma 3.9. Suppose IHI < q2n-t4 for G # U,,(q), and IHI < q4n+8 for G = U,,(q). 

If IG: HI = 3’1 f or some r > 1 and some I 10 then (G,H) = (L2(9),As) or 

(U4(3),L3(4)). 
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Proof. Suppose IG : HI = 3’1 for some 1 10 and some r > 1. Assume G = L,(q), If 

n > 7 then n(n - 1)/2 > (2n + 4) + 3. Since q”(“-‘)‘2 jG(, q3 IG : HI and so p = 3. 
I I 

However,q’-l>q’-’ fori>3andq2-l>q(n,q-1). So 

- . - ,G. H,,, > (q” 1). .(q3 1)(q2 - l)/(n,q - 1) > q(“-‘)+“.+2+1 
4 2nf4 4 2n+4 

= qn(n--1)/2-(2n+4) > q3 > 10, 

a contradiction. Suppose that n = 6 and q 2 4. If p = 3, then since qi - 1 > qi-‘(q - 1) 
for 2 < i 5 6, 

- 
2 (s6 

- 
IG. H,3, W-(q2 1)/(6q 

- 
1) 

- - 
16 > q’+“‘+‘(q O4 =---- (4 II4 4 9 16 > 1o ' 4 

a contradiction. If p # 3 then 3 q3 + E for some E = 1 or - 1, so 

JG : H13, 2 q15(q3 + E, - (q3 + &) > 10 

4 
16 

9 ' 

a contradiction. Thus n 5 5, or n = 6 and q 5 3. By [19, 5.1.1-5.1.3 and 5.2.1-5.2.21, 

G sot(H) (Isoc(H)l) 

If (G,soc(H)) = (Lz(q),A5), then since $/HI) = {2,3,5}, we have z(IG]) = {2,3,5}. 

It follows from Lemma 2.3(l) that G = L2(9) E Ag. However 3 
t 

IG : HI, a contradic- 

tion. If G = Lj(q) or L4(q), then rc(IHI)C{2,3,5,7} and 72iiHI. Thus rc(]Gl)&{2,3, 

5,7} and 72)jiGI. By L emma 2.3 and [3], no such G exists such that IG : Hi13’10. 

Suppose G = Ls(q). Then (q5 - 1)(q4 - 1)(q3 - 1)1 jG/. If q3 = 26 then G = L5(4), so 

31 = 25 - 1 IG : HI, a contradiction. If q3 # 26, then by Lemma 2.1, (G] has at least 

three different prime divisors greater than 3. It follows that lG : HI has a prime divisor 

greater than 5, a contradiction. If G = L6( 3) then 7 IGI, so 7 (G : HI, a contradiction. 
I I 

For the other cases, similar arguments deduce that the lemma is true. 0 

Now suppose that G is a classical simple group and that H is a maximal subgroup 

of G in collections %‘I-%‘s, which has index 3’1. 

Lemma 3.10. I’H E 931, then Theorem 1.1 hoids. 
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Proof. Assume G = L,(q). By [14, 4.1.171, 

H = [qm(n-q a 
[ I (4 - l,n) 

G,(q) x JLn(q))Ql? 

where 1 5 m 5 n - 1, a = j{(ii,&) E GF(q2)* x GF(q2)* 1 3T-l = 1, ATniP”’ = l}j 

and b = (q - l)(q - 1, m)(q - 1, n - m)/a. Thus any prime divisor of IH] divides 

q or q’ - 1 for i < n. First suppose IZ 2 3. If q” = 2(‘, then either G = L3(4) 

and H = 24.L2(4), or G = Le(2) and H = [25].GL5(2), [26](SL2(2) x sL4(2)) or 

[29].(SLs(2) x SLj(2)). It is easy to show that 7 or 31 divides (G : HI, a contradiction. 

If q” # 26 then q” - 1 (G( and, by Lemma 2.1, there is a prime k qn - 1 such that 

k > n and k q’ - 1 for all i < n. Thus k IG : HI, so k < 5 and IZ < 4. If n = 3 

then 

H = [q2]. 
q-l 

[ I (9 - 193) 
.Lz(s).E(q - 1,211. 

Thus IG : HI = (q3 - l)/(q- 1) = q2+q+ 1. By Lemma 2.1, either p3e = 26, or there 

is a prime k p3e - 1 such that k > 3e > 3 and k 
ii 

p2e - 1. If p3e = 26 then G = Ls(4) 

and IG : HI = 21, a contradiction. If p3e # 26 then k IG : HI, so k = 5 and e = 1. 

Now5p4-1 and5 p2-l,so5p2+1,contraryto5p2+p+1.1fn=4then 

fG:HJ = 
(cl2 + l)(q+ 1) ifm= 1, 

(q2+1)(q2+q+1) ifm=2. 

If IG: HI = (q2+1)(q+1), then since 4 IG: HI and (q2+l,q+l) = 1 or 2, we have 

q’ + 1 and q + 1 are odd, and so q2 + 1 5 or q + 1 5. If q2 + 1 5 then q + 1 = 3’, so 

q = 2. That is, G = L4(2) Z As and H = 23.L3(2). If q + 115 then q2 + 1 = 3’, which 

isnotpossible.IfJG:H~=(q2+l)(q2+q+l),thensince(q2+l,q2+q+1)=1, 

eitherq2+1 10andq2+q+1=3’,orq2+q+1 10andq2+1=3’,bothofwhich 

are not possible. Now suppose n = 2. Then 

H = M [ (y”-i 12)] and jG:HI=q+l. 

If q = p then clearly p + 1 is even, which is listed in the lemma. If q = pe > p, then 

by Lemma 2.1, either pe = 23 or there is a prime k pe + 1 such that k > 2e > 4. Thus 

either p’ = 23, or e = 2 and 5 = k IG : HI. If pe = 8 then G = L2(8) and H = 23.7; 

if e = 2 then either pe = 4 or pe + 1 is even. So either G = Lz(4) and IG : HI = 5, 

or (G : HI = pe + 1 = 10.3’. 
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Assume G = U,(q), n 2 3. Then q” - (-l)“l/Gi. If iz is odd, then q” + l(]Gl. 

Note that q” # 23. By Lemma 2.1, there is a prime k q” + 1 such that k > 2n and 

k 
ii 

qi - 1 for all i < 2n. By [14, 4.1.4 and 4.1.181, any prime divisor of IHI divides 

q or qi - 1 for i 5 2n - 2. Thus k > 5 is a prime divisor of IG : HI, a contradiction. 

If n is even, then q”-’ + 1 (GJ. If q”-’ = 23 then G = U4(2) and H = 24.A5 by 

[14, 4.1.181. Suppose q”-’ # 23. By Lemma 2.1, there is a prime k q”-’ + 1 such 

that k > 2(n - 1) > 5 and k 
1 

q’ - 1 for all i < 2(n - 1). Again by [14, 4.1.4 and 

4.1.181, any prime divisor of /HI divides q or qi - 1 for i <2(n - 1). So k JG: HI, a 

contradiction. 

Assume G = PSp,(q), n > 4. Then q” - lI/GI and by [14, 4.1.3 and 4.1.191, 

H = (2,4 - 1) (pspdq) X PSp,+(q)) (2 I m < n/2) or 

[@I~(4 - 1). W%(q) x pSp,--2dq)) (1 5 m < n/2), 

where a = m/2 - 3m2/2 + mn. Thus any prime divisor of IHI divides q or q’ - 1 

for i < n. If q” = 26, then G = sp6(2), H = 26.L3(2) and IG : HI = 335. Suppose 

q” # 26. By Lemma 2.1, there is a prime k q” - 1 such that k > n and k 
ii 

q’ - 1 for all 

i <n. Thus k,/lHJ and kllG : HI, so k 5 5 and n = 4. It follows that H = [q’](q - 

l).(PGL,(q) x f?Sp.+2m(q)) and m = 1 or 2. If m = 1 then H = [q3].(q - l).PSpz(q). 

Thus jG : HI = (q2 + l)(q + 1) = 3’1. Since 4 (G : HI and (q2 + 1,q + 1) = 1 or 2, 
4 

q is even. So either q2 + 1 = 3’ and q + 1 5, or q + 1 = 3’ and q2 + 1 5. Hence 

G = PSp4(2) Z A6 and H = S4. If m = 2 then H = [q3].(q - l).PGLz(q). Similarly 

arguments can show I G : HI ,/T 10, a contradiction. 

Assume G = PsZ$(q). Then n 2 8 and qnP2 - 1 IGJ. If qfle2 = 26 then G = P@(2). 

By [14, Section 4.11 and [3], H = 26.Ag and IG : HI = 33.5. Suppose q”-2 # 26. By 

Lemma 2.1, there is a prime k q”-2 - 1 such that k > n - 2 > 5 and k 
4 

qi - 1 for all 

i < n - 2. However, by [ 14, 4.1.6-.7 and 4.1.201, one of the following holds: 

(a) G = P&$(q) and H = t&-l(q); 
(b) G = PC?:(q) and H = Sp,_z(q); 
(c) any prime divisor of IH( divides q or q’ - 1 for i < n - 2. 

If(c) holds then k /G : HI, a contradiction. If (a) holds then (G(/(H( = (2/(4,q” - 1)) 

qmel(qm f l), where m = n/2 2 4. Thus p = 3 and /G : H(sr > (q” - 1)/2 > 10, a 

contradiction. Similarly, case (b) cannot hold. 

Assume G = P&?,(q), n odd. Then arguing as for the case G = Z%&(q) in the 

previous paragraph, no H satisfies our requirement. 0 

If H lies in one of collections ‘&-%‘s, then similar arguments can prove Theorem 1.1. 
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4. Proofs of Theorems 1.2 and 1.3 

Proof of Theorem 1.2. Let sot(G) = Ti x . . . x Tk for k 2 1. Since G is a primitive 

group, G satisfies the O’Nan-Scott theorem, see [18]. If Ti is abelian then part (i) 

holds, 

Assume that Ti is nonabelian and k > 1. Then clearly G is neither of type II (a), 

nor of type III (b) (ii), nor of type III (c) (in terms of [18]). If G is a group of type 

III (b) (i), then since 22 and 52 do not divide n, Ti has a maximal subgroup ZYi of 

index 3” for some integer s Y. By Theorem 1.1, part (ii) holds. 

Finally, assume that sot(G) = T is a nonabelian simple group and that H is a maxi- 

mal subgroup of G of index 3’1. Then T Cl G 5 Aut(T). Since (HTI = IHllTl/lH n TI, 

we have \TI/IH n T[ = IHTI/IHI, which divides lGl/lHl. So H n T is a subgroup of 

T of index 3’.1’ where s I r and 1’ 10. By Table 1, it is easy to obtain Table 2. 0 

Now we are going to prove Gardiner and Praeger’s conjecture by checking the 

groups in Table 2. First we prove a simple lemma. Let G be a transitive permutation 

group of degree n on a set s2 and let H = G, where CI E Sz. Suppose n = 3’1 for some 

I 10. For g E G, write g as a product of disjoint cycles (~~42. ..)(tqb~. . .).. .(z1z2.. .). 

Select the first point, the third, fifth, etc. from each cycle, but where a cycle has odd 

length omit the last point. These points form a set A satisfying A n AS = 0. Denote 

this A by A(g). 

Lemma 4.1. rf 51 

Proof. Now G has an element g of order 5 which fixes no point of Q. Thus A(g) has 

length 2.(n/5). Since 2n/5 > n/3, G does not have the property BM(n/3). 0 

Proof of Theorem 1.3. We only need to prove that no group in Table 2 has the 

property BM(n/3), except for the case G = A 5. By Lemma 4.1, if (G,H) = (Ae,&), 

(&b(7))> (A~>2~&(2)), (L2Q3)J3.7), (U4(2),2@1 X &).2) Or (~P&),~~WW, 

then G does not have the property BM(n/3). If (G,H) = (U4(3),&(4)), then G is of 

rank three and has nontrivial suborbits Szt and CC& of sizes 56 and 105. Let g be an el- 

ement of G of order 7. Since 72 IG( and 7 56 and 105, g has no fixed point in 521 and 
i I 

522. Thus g fixes only the point c1 of Sz. Hence A(g) from g has length 3.7 > y, so 

G does not have the property BM(y). If (G,H) = @IO,&) or (Ps2L(2),26.Ag), then 

G contains at least two conjugacy classes of subgroups of order 5. Since all subgroups 

of H of order 5 are conjugate and all point-stabilizers in G are conjugate, we know 

that all subgroups of order 5 which fix at least one point of s2 are conjugate. Thus G 

has an element g of order 5 which fixes no point. So if G = ,410 then A(g) has length 

2.y > 4; if G = Z%:(2) then A(g) has length 2.y > y. Hence G does not have 

the property BM(n/3). If G = U4(2) and H = 24.A5, then H fixes CI and has nontrivial 

orbits 521 and 522 on Q\(E) of sizes 10 and 16 respectively. Let g be an element of H 
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of order 5. Then g has no fixed point in 521 since H[Q, has the point-stabilizer iso- 

morphic to 24.D6 with no element of order 5. Note that H/Q, is 2-transitive on 02. 

Thus HP E As is transitive on sZ,\{/?} f or some fl E Q2. Let y E sZ,\{fl}. Then 

Hh = A4 is of order coprime to 5. Thus g fixes no point in Qz\{p}. Hence g fixes 

no point in Q\{a,b} = Szi U 522\(b). S o we can construct a d(g) from g, which has 

length 2. y = 10 > F. So G does not have the property BM( 7). 

Now assume G = A, and H = A,_, . If c = 6, then G has an element g of 

order 4 which fixes no point in R. Thus we can get a set d(g) of size 3 such that 

d(g)nd(g19 = 0, so G does not have the property BM(2). Suppose c > 6. Since 4 
J 

c, 

4 c - i for some i = 1,2 or 3. Thus G has an involution g which exactly fixes i points 

of Q. Hence d(g) from g has length (c - i)/2. Note that now c 2 9 and if c = 9 then 

i = 1. We have (c - i)/2 > c/3, so G does not have the property BM(4cJ3). 

Assume G = Lz(q) and H = [q].Zc,_l),2, where q = p or p2, and q is odd. Then 

n = IG : HI = q + 1. Since 3 q + 1, we have p # 3. Since G is 2-transitive on Q, H 

is transitive on sZ\{a}. Let /? E Q\(U). Then H,p = Z+i)/2 and (q, IHas/) = 1. Thus 

H, has an element g of order p which fixes no point in a\{~}. Let d(g) be the set 

that came from g. Then 

IA(g)l = E+L” > 4. 
P 

Thus G does not have the property BM(n/3). This completes the proof of Theorem 1.3. 

0 

Final remark. While this paper was in preparation, the author was told that A. Mann 

and C.E. Praeger proved Gardiner and Praeger’s conjecture. Our work is independent 

of, and the methods used here are different to, theirs. 
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